在 Python 中使用 RMSE

Fariba Laiq 2023年1月30日 2022年5月18日
  1. Python 中均方根误差的公式
  2. 在 Python 中使用 NumPy 计算 RMSE
  3. 在 Python 中使用 scikit-learn 库计算 RMSE
在 Python 中使用 RMSE

RMS(均方根 root mean square),也称为二次平均,是一系列数字平方的算术平均值的平方根。

RMSE均方根误差)为我们提供了实际结果与模型计算结果之间的差异。它定义了我们的模型(使用定量数据)的质量,我们的模型预测的准确度,或者我们模型中的错误百分比。

RMSE 是评估监督机器学习模型的方法之一。RMSE 越大,我们的模型就越不准确,反之亦然。

使用 NumPy 库或 scikit-learn 库有多种方法可以在 Python 中找到 RMSE

Python 中均方根误差的公式

计算 RMSE 背后的逻辑是通过以下公式:

$$
RMSE=\sqrt{\sum_{i=1}^n {(predicted_{i}-actual_{i})}^2}
$$

在 Python 中使用 NumPy 计算 RMSE

NumPy 是处理大数据、数字、数组和数学函数的有用库。

使用这个库,当给定 actualpredicted 值作为输入时,我们可以轻松计算 RMSE。我们将使用 NumPy 库的内置函数来执行不同的数学运算,如平方、均值、差值和平方根。

在下面的例子中,我们将通过首先计算 actualpredicted 值之间的 difference 来计算 RMSE。我们计算该差异的平方,然后取平均值

直到这一步,我们将获得 MSE。为了得到 RMSE,我们将取 MSE平方根

注意
要使用这个库,我们应该先安装它。

示例代码:

#python 3.x
import numpy as np
actual = [1,2,5,2,7, 5]
predicted = [1,4,2,9,8,6] 
diff=np.subtract(actual,predicted)
square=np.square(diff)
MSE=square.mean()
RMSE=np.sqrt(MSE)
print("Root Mean Square Error:", RMSE)

输出:

#python 3.x
Root Mean Square Error: 3.265986323710904

在 Python 中使用 scikit-learn 库计算 RMSE

在 Python 中计算 RMSE 的另一种方法是使用 scikit-learn 库。

scikit-learn 对机器学习很有用。该库包含一个名为 sklearn.metrics 的模块,其中包含内置的 mean_square_error 函数。

我们将从这个模块导入函数到我们的代码中,并从函数调用中传递 actualpredicted 值。该函数将返回 MSE。为了计算 RMSE,我们将取 MSE 的平方根。

注意
要使用这个库,我们应该先安装它。

示例代码:

#python 3.x
from sklearn.metrics import mean_squared_error
import math
actual = [1,2,5,2,7, 5]
predicted = [1,4,2,9,8,6]
MSE = mean_squared_error(actual, predicted)
RMSE = math.sqrt(MSE)
print("Root Mean Square Error:",RMSE)

输出:

#python 3.x
Root Mean Square Error: 3.265986323710904
Author: Fariba Laiq
Fariba Laiq avatar Fariba Laiq avatar

I am Fariba Laiq from Pakistan. An android app developer, technical content writer, and coding instructor. Writing has always been one of my passions. I love to learn, implement and convey my knowledge to others.

LinkedIn

相关文章 - Python Math