在 Pandas 的列中展平层次索引

Luqman Khan 2023年1月30日 2022年5月16日
  1. 使用 rest_index() 在 Pandas 的列中展平层次索引
  2. 使用 as_index 在 Pandas 的列中展平层次索引
在 Pandas 的列中展平层次索引

本文将讨论如何在 Pandas Dataframe 列中展平分层索引。

Groupby 聚合函数通常用于创建分层索引。使用的聚合函数将在结果 DataFrame 的分层索引中可见。

我们将使用不同的函数来解释如何在列中展平层次索引。

使用 rest_index() 在 Pandas 的列中展平层次索引

Pandas 中的 reset_index() 函数将 groupby 聚合函数创建的分层索引展平。

语法:

pandas.DataFrame.reset_index(level, drop, inplace)

其中,

  • level:仅从索引中删除指示的级别。
  • drop:索引重置为默认整数索引。
  • inplace:不复制,永久修改 DataFrame 对象。

我们使用 Pandas groupby() 函数按季度对巴士销售数据进行分组,并使用 reset_index() pandas 函数来展平分组 DataFrame 的分层索引列。

首先,导入 Python Pandas 库,然后创建一个简单的 DataFrame。DataFrame 存储在 data_bus 变量中。

import pandas as pd
data_bus = pd.DataFrame({"bus": ["2x", "3Tr", "4x", "5x"],
                    "bus_sale_q1": [21, 23, 25, 27],
                    'bus_sale_q2': [12, 14, 16, 18]}
                    columns=["bus", "bus_sale_q1",
                            'bus_sale_q2'])
data_bus

输出:

     bus    bus_sale_q1    bus_sale_q2
0    2x     21             12
1    3Tr    23             14
2    4x     25             16
3    5x     27             18

上面的输出显示了创建的简单 DataFrame。之后,使用 groupby() 函数根据销售额 q1 和 q2 的总和对总线列进行分组。

grouped_data = data_bus.groupby(by="bus").agg("sum")
grouped_data

输出:

bus    bus_sale_q1    bus_sale_q2
2x     21             12
3Tr    23             14
4x     25             16
5x     27             18

我们将使用 reset_index() 函数来展平分层索引列。

flat_data = grouped_data.reset_index()
flat_data

输出:

     bus    bus_sale_q1    bus_sale_q2
0    2x     21             12
1    3Tr    23             14
2    4x     25             16
3    5x     27             18

使用 as_index 在 Pandas 的列中展平层次索引

pandas groupby() 函数将用于按季度对巴士销售数据进行分组,而 as_index 将展平分组 DataFrame 的分层索引列。

语法:

pandas.DataFrame.groupby(by, level, axis, as_index)

其中,

  • level:必须对其执行 groupby 操作的列。
  • by:必须对其执行 groupby 操作的列。
  • axis:是否沿行 (0) 或列 (1) 拆分。
  • as_index:对于聚合输出,返回带有索引组标签的对象。

我们将使用 Pandas groupby() 函数按季度对巴士销售数据进行分组,并将 as_index 参数设置为 False。这确保了分组 DataFrame 的分层索引是扁平的。

将使用与上一个示例相同的 DataFrame。

例子:

import pandas as pd
data_bus = pd.DataFrame({"bus": ["2x", "3Tr", "4x", "5x"],
                    "bus_sale_q1": [21, 23, 25, 27],
                    'bus_sale_q2': [12, 14, 16, 18]},

                    columns=["bus", "bus_sale_q1",
                            'bus_sale_q2'])
data_bus
grouped_data = data_bus.groupby(by="bus", as_index=False).agg("sum")
print(grouped_data)

输出:

     bus    bus_sale_q1    bus_sale_q2
0    2x     21             12
1    3Tr    23             14
2    4x     25             16
3    5x     27             18

相关文章 - Pandas Column